
Adiabatic elimination for classical fermionic systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 4371

(http://iopscience.iop.org/0305-4470/20/13/037)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) 4371-4382. Printed in the U K  

Adiabatic elimination for classical fermionic systems 

Christian Elphickt 
Laboratoire de Physique ThCoriquet, UniversitC de Nice, Parc Valrose, 06034 Nice Cedex, 
France 

Received 31 October 1986 

Abstract. We present the reduction to a normal form of a Grassmannian differential 
equation describing a classical fermionic system in the neighbourhood of an instability. 
As an application of the method presented we show that the anticommuting version of the 
normal form associated with (a )  the Hopf bifurcation (a  simple pair of imaginary eigen- 
values) leads to the overdamped Grassmann harmonic oscillator, and (b)  the resonant 
Hopf bifurcation 1 : 1 (a  double pair of semisimple imaginary eigenvalues) corresponds 
exactly to the Thirring model for Grassmann solitons. 

1. Introduction 

A great deal of attention has been devoted recently to the study of Grassmann variables 
in connection with the description of Fermi systems (Berezin and Marinov 1977, 
Elphick 1986, Ohnuki and Kamefuchi 1980). This stems from the fact that Grassmann 
variables are the classical counterparts of fermionic quantum operators or, in other 
words, for each Fermi operator one can construct an eigenbasis of coherent states such 
that its eigenvalues belong to a Grassmann algebra. Therefore the classical version of 
the Heisenberg equations of motion for a Fermi system corresponds to an evolution 
equation whose phase space is a Grassmann algebra, i.e. a differential equation for 
anticommuting variables. Particular models involving this type of equation have been 
extensively studied by Berezin and Marinov (1977) in the context of supersymmetry, 
by Kulish and Nissimov (1976) who considered the anticommuting massive Thirring 
model (AMTM) and by Morris (1978) who determined a Backlund transformation for 
the AMTM generalising the prolongation structure method of Wahlquist and Estabrook 
( 1975) to Grassmann algebra-valued differential forms. 

It is worthwhile pointing out that differential equations for Grassmann variables 
are also naturally encountered in the description via the path integral of a quantum 
mechanical Fermi system. In this description, if H ( a , ,  a:, t )  denotes the normal ordered 
Hamiltonian of the fermionic system then the integral kernel of the evolution operator 

r f ;  e ( ( ) ,  t , )  ( ec f ) ,  O,,,  are Grassmann variables and * is the analogue of i) is 
given by a functional integral over a Grassmann algebra: 

u(e, f ) ,  lf; 8 ( r ) *  l!)=j e,) exp t ( e T f ) k e ( f ) k + e T ~ ) k e ( l ) k )  
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4372 C Elphick 

where h is the 'classical value' of H when we replace the operators U : ,  U, by the 
Grassmann variables O:, 8,. Explicit calculation of the path integral leads to the 
evaluation of the classical action on the extrema1 trajectory satisfying the classical 
equations of motion: 

1 . ah - 0: =- 
i ' ao; i a 4 
1 . ah 
- 6  =-- 

(since O,, 0: anticommute the sign in the Hamilton equations is the same). Therefore 
we have naturally arrived at a set of Grassmannian differential equations. (If a fermionic 
field theory is considered then ( 2 )  is a set of partial differential equations (PDE)  for 
Grassmann fields (this type of equation has recently received much attention in 
connection with supersymmetric extensions of integrable models and superevaluation 
equations (Gurses and Oguz 1985, Kupershmidt 1984, Olshanetsky 1983, Roy Chow- 
dhury and Roy 1986)). For the sake of clarity we consider here only the case of a 
finite number of degrees of freedom, the generalisation to PDE for Grassmann fields 
being straightforward.) 

We consider here, with no particular model in mind, a general non-linear Grassmann 
differential equation (not necessarily derived from a variational principle) describing 
a classical Fermi system undergoing a degenerate bifurcation. Such a situation is 
characterised by the linear instability of one or several Grassmann modes (critical 
modes) while the others remain strongly damped. We show that by an appropriate 
non-linear change of variables the original differential system can be reduced to a 
simpler one such that its asymptotic dynamics is described only by an equation for 
the critical modes referred to as the normal form equation. 

The plan of this paper is as follows: in § 2 we present some preliminaries on 
Grassmann algebras and notation to be used in the other sections. Section 3 is devoted 
to developing the method leading to the normal form and the equation for the 
non-critical modes. In  § 4 we make a useful comment on adiabatic elimination for 
Grassmann variables and finally in § 5 we apply the techniques presented to some 
specific examples of low codimension (minimum number of parameters needed to 
unfold the critical situation) and, in particular, we study how the normal form corre- 
sponding to the double Hopf bifurcation (two pairs of semisimple imaginary eigen- 
values) leads to the Thirring model. 

2. Brief preliminary on Grassmann algebras 

An algebra whose generators 6, , . . . , 6, satisfy the relations 

(3) [61, 611- = 616, + 6J6l = i, j = 1, . . . , n 

is called a Grassmann algebra %, with n generators. If an algebra % possesses an 
infinite countable number of generators satisfying (3 )  for any i, j belonging to a 
countable set Z then we will refer to % as an infinite-dimensional Grassmann algebra. 
%,, is also a 2"-dimensional linear space which is the direct sum of linear spaces 

3, =@ k % k k )  (4) 

where %Lk) is (k")  dimensional and generated by monomials of degree k {[,,[,, . . . t,,}. 
%:' is a one-dimensional linear space whose generator (the identity of 3,) can be 
regarded as the generator of C. 
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It follows that an arbitrary element g of Ce can be represented in the form of a 
linear combination of monomials 

This decomposition is unique if all the coefficients a 1 1 , 2  I /  E 43 are totally antisymmetric 
in i , ,  . . . , i, E I. An element in Ce of the form 

is called a homogeneous element of degree k. Therefore Ce can be decomposed as 
Gee@ Ceo where Cee (resp go) is the set of elements in Ce which are linear combinations 
of homogeneous elements of even (resp odd) degree. Elements belonging to Cee (resp 
Ceo) are called even (resp odd).  It follows that for any g in 3, gCee = Ceeg and gCeo = --Ce0g 
(for g odd).  

If Ce is endowed with an inner product ( , ) then we can define a one-to-one 
mapping of Ce onto itself g + g *  such that (i) (g*)*=g, (i i)  (g,g,)*=gfgT, (iii) 
(ag)* = Eg*, a E @, and (iv) (f, g) = (f*, g*). This mapping is called the involution in 
Ce and the elements g, g* are called adjoint to each other. 

Finally we review some basic properties of derivation and integration of Grassmann 
algebras. For the sake of clarity we will illustrate these concepts with the following 
simple example. We consider a two-level Fermi system with the two operators a, a' 
satisfying aa'+ u t a  = 1, a' = (a')' = 0. We represent them acting on the four- 
dimensional Grassmann algebra generated by 0, e* ( O 2  = (e*)' = 0, eo* + 8*8 = 0). An 
element g in Ce2 has the form 

g(e, e*)=go+g,e+g,e*+g3ee*.  ( 7 )  

a'glae = g, + g,e* a'g/ae* = g2-g3e. (8) 

We introduce in Ce2 the linear left derivation 

Decomposing Ce2 as Ce2(e10Cez(0) we easily derive the following properties. Let g be 
an arbitrary element in Ce2; then 

where the + sign (resp -) holds if g, E (resp C e 2 ( 0 , )  and .$ stands for 6 or e*. 
If g, f E Ce2 then we define the scalar product by 

k ,  f) = go.70 + g1.71+ gJ2 + g3.73 (10) 
(a  bar stands for complex conjugate) which can be written as the Grassmann integral 

(11) exp(-(eTe, + e?e2))g(8,, e 2 ) f ( e ? ,  e?)  de: de,  d e f  de2 

where the integral symbol is defined by linearity starting from the requirements (Berezin 
1966) 

[de, de*]- = 0 

and (e, e*) anticommute with (de, de*). From (8) and (12) we clearly see that the 
integral and the left derivation are identical. 

The above properties are easily generalised to several degrees of freedom. 
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3. Reduction to the normal form and the equation for the stable modes 

Let % be an infinite-dimensional complex Grassmann algebra with an involution. Let 
us consider in % a finite family 9 of n real odd elements depending on a real parameter 
t :  

9 = {e,( t )  E %o; e,( t )  = e:( t ) ,  [e,( t ) ,  e,( t ) ]  = 0, V i ,  j = 1, . . . , n, v t E [ to ,  +a)}. (13) 
An element 0, in 9 can be represented as 

where the coefficients fjlJ2 ' p (  t )  belong to C"([  t o ,  a)). 

t according to 
We assume that elements in 9 describe a classical Fermi system and evolve with 

e( t  = t o )  = oo (15) 
d 8  
-= L 8 + N ( 8 )  
d t  

where 8 is a n-dimensional Grassmann vector, 8 = Ole' (sum over repeated indices), 
e', i = 1, .  . . , n, being the canonical basis of a vectorial space E, L is a real linear 
operator acting on E and N ( 8 )  stands for an arbitrary odd non-linearity (note that 
dO/dt is odd and if (15) is a Hamiltonian system, as in ( 2 ) ,  then h must belong to 
%e). Note that if n = 2 then (15) reduces to a linear equation. In the following, n > 2 
will be implicitly assumed. We also suppose that L and N depend on a parameter 
p E R p  and that in (15) we are at a point w, such that L has n, eigenvalues with a 
vanishing real part which we call critical, while the rest of the eigenvalues denoted by 
y e ,  a = 1, . . . , M = n - n,, are different and have a strictly negative real part. In this 
scenario, assumed to persist in a small neighbourhood of p,, the asymptotic solution 
of (15) 8 = 0 is linearly unstable. Since L is real, the critical eigenvalues can only be 
zero or pure imaginary, in which case they are complex conjugate ( i q ,  -io+) k =  
1,. . . , s (for simplicity we assume they are semisimple). Then n, = I ' + 2 s  where I' is 
the algebraic multiplicity of the zero eigenvalue. 

According to our assumptions we can split E into the direct sum of L-invariant 
subspaces E,@ E , ,  where E ,  is the stable subspace spanned by the vectors L+m = 
y&, a = 1, .  . . , M ,  and E, is spanned by the generalised eigenvectors +', i = 1, . . . , n,, 
such that 

L+t = Jj&j (16) 
where the Jordan matrix is given by 

J =  

J l  

J 2  

J, 

0 

where J, is a n, x n, matrix with zeros in the diagonal and ones in the upper diagonal, 
0 is a I x 1 null matrix, Sl, is the diagonal matrix corresponding to the pair (iw], -iwl) 
and Zp,, n, + 1 = 1'. 
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Let us consider now in 9 a new finite family of odd variables 

{AI, A I , .  . . ,Al., Al,+l, A/,+2=A:+l,. . . , A,,-] ,  Anc=A:<-1; B,, ( ~ = l , .  . . , M }  

defined through the non-linear change of variables 
M ( m - l ) / 2  

e(r )=  A i ( t ) 4 i +  c B,(t)+,+ c 8[2j+l ] (~ , ,  B,) (18)  
i = l  , = I  j = l  

where m = n (resp m = n - 1 )  if n is odd (resp even) and 8[21+11 is homogeneous of 
degree 2 j +  1 in the variables {A!, B,} .  We look for equations for {A,, B,}  of the form 
dA, (m-1112 

I- - J,Aj + C fS2j+11(Ak, Bp) = J,A, + F, i = 1, .  . . , n, 
dt  j = l  

( m - 1 ) / 2  
- y,B, + g&””](Ak, Bp) y,B, + G, CY = 1 , .  . . , M dB, -- 

dt  j = l  

where f1[”+’] ,  i = 1,  . , , , n,, and g?+l1, (Y = 1 ,  . . . , M are homogenous of degree 2j + 1 
in {Ak, B p } .  The idea is to choose 8[2J+11, j = 1 , .  . . , (m - l ) ,  such that F,, G, can be 
taken as simple as possible. As we will see below, G, will turn out to be linear in B,,  
F, independent of B p ,  p = 1 , .  . . , M,  and such that F = F& is equivariant under the 
one-parameter Lie group generated by J’ (Elphick et a1 1986). 

From (18 )  we have 

dB dA, d‘8 dB, 3’8 
dt  d t  aA, d t  aB, 

- 

where the subscript 1 means that in differentiating with respect to the variable A, or 
B, we must displace it to the left before dropping it. By substituting (18 )  into (15), 
using (20) and equations (19a) and (19b) we obtain the following hierarchy of equations 
(j = 0 leads to a trivial verification): 
~ & 2 1 + 1 1  = (a+ OJ - ~ ) 8 [ 2 / + 1 1  

U j = 1, ( m  - I )  (21) - - p + ~ I  -p+114, - & l + I l +  E K[2/+11 

where 

d = J,A, a‘laA, OJ = yaB, a’/aB, 

and 

If j = 1, the last term in (23) is absent. The operator 2 = d + OJ - L in (21) is called 
the homological operator associated to L (Arnold 1977, Elphick et al 1986) and acts 
on the tensor product X= E 0 XI@ X 2  where XI (resp X I )  is the linear space generated 
by odd monomials in the variables Ai (resp B,). We endow X with the inner product 

(24) ( 9 )X=( 9 ) E ’ (  3 )XI’( 9 

where ( , )E is such that {4,, +,} form an orthonormal basis and ( , 
(an analogous expression holds for Z2) 

is given by 
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We note that the above expression is a multiple Grassmann integral defined in the 
sense of § 2. It is worthwhile remarking that the scalar product introduced for X, 
(resp X 2 )  is such that the operators A , ,  a ' /aA,  (resp B,, a ' /aB, )  are adjoint to each 
other and  satisfy 

i.e. they are fermionic creation and annihilation operators in the Fock space XI (resp 
X 2 )  or, equivalently, U, + a;, i( uJ - U : )  (resp b, + b:, i (  b, - bb)) generate the Clifford 
algebra C2,= (resp C Z M ) .  

Using the above properties of the inner product in 2, the adjoint of 2 becomes 

2t = S , ] A ,  a'/aAJ + T ~ B ,  a'/aB, - L' L' = 'L. (27)  

Therefore the adjoint of 2 corresponds to the homological operator associated to L'. 
Graphically, this means that the following diagram is commutative: 

L - 2  
adjoint in E adjoint in %' 

Li- 

Having defined Yt we now focus our  attention on equation (21) .  Since ker L is 
non-trivial it easily follows that 2 is a linear non-invertible operator in X. Therefore 
(21) will not have solutions unless K[2Jt11 E ran 2, j = 1 ,  . . . , f ( m  - l ) ,  from which we 
deduce that the unknown functions fF2J'"1c$I + g[2J+1'+,, j = 1, . . . , f ( m  - l ) ,  have to 
be taken in the complementary space ker Yt (X = ran 2@ ker YT) modulo (if needed 
to simplify the form of ( 1 9 4  and (19b)) some judicious choice in ran 2. This solvability 
condition is nothing but the Fredholm alternative. Therefore we have to carry out the 
following programme: ( a )  determine the generators of ker 2' and ( b )  impose the 
Fredholm alternative K[2Jt11 orthogonal to ker 2" to determine f ~ 2 J " 1 ,  gi2'T"'1. 

Assuming the non-resonant condition of the set { y , ,  . . . , y,,,,, y M t l  = 
iw, ,  . . . , Y ~ + ~ ~  = -ius} 

(29)  Yz # c YJ V i €  I = ( 1 , .  . . , M +2s}, V J G  I 
I C  J 

we easily obtain that ker 2' is generated by vectors in 2 of the form 

B , Y ( A J ) J / U  (no sum over a) ( 3 0 a )  

where Y E  ker d t  ( Y must be an even element in XI), and by vectors X in 2 such that 

( a ' - L + ) X = O .  

From (30b) it follows that X is of the form 

? x l ( A J ) c $ i  
i = l  

where X , ( A l ) ,  i = 1 , .  . . , n,, are linear combinations of monomials of odd degree in Z1. 
We conclude that the functions F, in ( 1 9 a )  can be chosen independent of 

{ B , ,  . . . , B M }  and such that F = Flc$t satisfies the differential equation 

(JIJA, a'/aA, -Jt)F=O (32) 
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which can be rewritten in the following equivalent form: 
"c 

VA = Ai+i E E ,  
d - (e-g'RF(egt"A)) = O  

d?7 i = l  
(33) 

and therefore F is equivariant under e J t R  (7  is a real parameter). 

functions G, in (196) are linear in B,: 
From (30a),  (306) and (31) ,  and using (+,, =0,  Vi, a, we deduce that the 

Gn = BaHe ( Aj 1 a=1 ,  . . . ,  M (34) 

where the functions H ,  satisfy 

Using ( 3 5 )  we obtain that G, satisfies 

which implies that G = G,t,be verifies 

where A = diag(y,, a = 1 ,  . . . , M ) .  

modes plus the equation for the stable modes) (19a) and (19b): 
Therefore, we conclude that the normal form equations (normal form for the critical 

are characterised by the equivariance property ( R ,  = e'*"): 

which follows directly from (33) and (37), and leads to the simplest form for F and 
G. We note that although we have used (29) to derive (39) a much more involved 
calculation also leads to (39) even in the case where (29) does not hold and L admits 
eigenvalues with a positive real part. 

It is worth remarking that (39) is a global characterisation for the normal form 
(38) giving a priori the simplest functional form for the non-linearities in (38). To 
know explicitly the coefficients of each admissible monomial (odd)  we have to use the 
Fredholm alternative in (21). 

We finally mention that in order to consider the unfolded situation in (15) ,  i.e. 
when p = pc+ 6p, it suffices to replace the critical part of L in (38) by the corresponding 
Arnold-Jordan matrix (Arnold 1971, Elphick et a/ 1986). 

4. Remarks 

It is worthwhile noting that since the functions G,, a = 1, .  . . , M in (38) are linear in 
B, and F only depends on the critical variables A,, i = 1 ,  . . . , n,, then the Grassmann 
manifold B defined by 

B, = O  a = 1 , .  . . , M (40) 
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is invariant under the dynamics defined by (38). Therefore for any initial condition 
belonging to B the system will remain on B forever and its dynamics will be solely 
described in terms of the critical variables (equation ( 1 9 ~ ) ) .  

Equivalently we can say that for times t >>sup, IRe yal-' all the variables B, will 
relax to zero and therefore the subsequent asymptotic dynamics will be described by 
the slow variables A, through (19a). By replacing in (18) B, = 0, a = 1,. . . , M ,  and 
expressing the M variables $, = (6, + , ) E  as functions of the n, variables 6 = (6, +,), 
we arrive at the M equations: 

L41=L41(il,..*,i~') 

iM =e*,(;,, . . . , inc) 
(41) 

which describe the Grassmann version of the stable manifold (Elphick et a1 1986), 
Guckenheimer and Holmes 1983), and can be interpreted by saying that asymptotically 
the rapid variables 6, follow the dynamics of the slow variables 6. 

The above description is just the Grassmann version of the adiabatic elimination 
method for differential equations with commuting variables (Haken 1977). 

Once the non-linear change of variables (18) and equations (19a) and (196) have 
been completely determined, appropriate initial conditions A,( to) ,  B,( to)  have to be 
added to (19a) and (19b) such that 6( to)  = 8, through (18). A subsequent integration 
of (19a) and (19b) and replacement of its solutions A,(t, to), B,(t, to)  in (18) leads to 
the solution of the original problem (equation (15)). As we will see in 0 5, there are 
a number of cases in which equations (19a) and (196) can be easily integrated (Elphick 
(1986) considered in detail the case JI = diag(0, iw, - iw))  and therefore the method 
presented in § 3 can be regarded as an integration technique of equations of the type 
(15). 

5. Some examples 

We introduce the notation z"lz"2. . . znqlzwl . . . w, (if, for example, w 1  = w 2  = w we use 
the notation 2w (resp U ' )  for the semisimple (resp non-semisimple) case) to refer to 
the critical situation characterised by the matrix J given in (17). 

5.1. No critical situation 

Since there are no critical modes the original system is equivalent through (18) to the 
linear system 

dB,/dt = y,B, a = l ,  . . . ,  M. (42) 

5.2. z instability 

J is the 1 x 1 null matrix and its associated Arnold-Jordan matrix is ( p ) .  Since there 
is only one critical mode we easily obtain the normal form for AI (in the unfolded 
situation) 

dA1ldt = P A ,  (43) 
and the equation for the stable modes is the same as in (42). 



Adiabatic elimination for classified fermionic systems 4379 

5.3. w instability (Hopf  bifurcation) 

Since now we have two critical modes, we cannot form with them a monomial of odd 
degree. Therefore, the normal form is (with an unfolding parameter) 

dA/dt  = ( k  +iw)A (44a) 

dA*/dt = ( p  -iw)A*. (446) 

From (35) we obtain the equation 

H, = O  
iw A--A*-) a' ( :i aA* (45) 

with solution H, = k,AA*. Therefore the equations for the B,, a = 1,. . . , M, are 

dB,/dt = B,( + k,AA*). (46) 

For p = 0 equations (44a) and (44b) represent an overdamped complex Grassmann 
harmonic oscillator. We recall that for commuting variables the Hopf normal form 
represents a strictly non-linear oscillator. 

(47) 

5.4. z 3  instability 

From (32) and (35) we obtain 

dtF,  = 0 

AtF3 = F2 

d'F2 = F, 

dtH, = 0 

where 

d' = A, d' laA2+Az a'laA,. 

Since there are only three critical modes, the solutions of (47) are given by 
F, = F2= F3 = O  and Ha = k,A,A,. Therefore (38) is (in the unfolded case) 

d3A, d2Al dA + p2 '+ p 3 A I  = 0 
X + P I -  d t2  dt  

a = 1,. . , , M. 
dt  d t  

5.5. z 4  instability 

In this case (32) and (35) give 

d t F ,  = O  d' Fz = F ,  

d t F 3 =  F2 d ' F 4 =  F3 

d t H ,  = 0 

where 

a' a' a' 
.dt = A, -+ A, -+ A3 - . 

aA, dA, aA, 
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Using the fact that the most general non-linear odd element in (A, ,  A2, A,, A4) is 
of the form 

(YIALA~A~ + a2A,A2A4+ a3A,A3A4+ ~qA2A3A4 (50) 

we readily obtain 

F ,  = aA,A2A3 

F4 = aA2A,A4. 

Similarly, by writing the most general even element as a linear combination of even 
monomials in (A, ,  A2, A3, A4) and replacing it in the last equation of (49) we obtain 
as solutions 

Finally the normal form can be further simplified by adding to (51) the following 
element in ran( d - J): 

FI = -aA,A2A3 

F; = -aAlA2A3 

F ;  = -aA1A3A4 

F i  = 3aA2A3A4. 

The definitive equations are (with unfolding parameters p,  , p2 ,  p 3 ,  p4) 

d4A1 d3A, d2A, dA, dA,  d2A, d3A, 
dt dt3 dt2 dt  dt dt d t  r + p l - + p 2 - + p ) - + / . ~ 4 A I =  U- 7 7 

a = 1,. . . , M. 
d BU dA, dA, d2A, d3AI d4A, - = B o (  yu + v u A l  =+p,A - - - - 
dt dt di' dt3 dt4 

(53) 

(54) 

5.6. 2o instability 

We now have four critical anticommuting variables A,, AT, A2, AT. The Jordan matrix 
J is given by 

i o 0 0 0  

-io 

( 5 5 )  

and consequently eJiq generates two independent rotations by W T ]  in the planes (A, ,  AT) 
and (A2, AT). Therefore using the invariance properties of 9 3 we conclude that the 
functions G, are linear combinations of monomials of even degree invariant under 
the above rotations and under the permutation A I  + A2: 

a = l ,  . . . ,  M. (56)  G, = G,(ATA, + AT A,) + P,(ATAlATA2) 
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The equivariance corresponding to F = ( F 1 ,  F:, F,, FT) in (39) leads to 

e '"~F,(e- '""A,,  e'""AT, e-'""A,, e'"''A,*) = F , ( A , ,  AT, A,, AT) 

e- '"F~(e- '""A,,  e'"'AT, e-l'"''A,, e'""AT) = FT(A, ,  AT, A,, AT) 

(57a) 

(576) 

and similar expressions for F,, F:. 

the equivariance property are given by 
From (57a) and (576) we easily obtain that the most general odd  elements satisfying 

F, = i(glATA2A, +g2ATA2A,) ( 5 8 ~ )  

F2 = i(g,ATA,A2+g2ATA,A2) (586) 

From (56), (58a) and (586) we arrive at the following equations for 
where g , ,  g, are constants. 

( A , ,  AT, AT, AT, B,, a = 1 , .  . . , M ) :  

-- dBo- Bo(?, +8, (ATAl+A~A2)+/3 ,ATA,AfA2) .  
d t  

The equations for AT, AT are obtained from (59a)  and (596) by taking the involution. 
Let us suppose now that the system considered is invariant under the independent 

reflections A ,  + -A , ,  A, + -A2.  This implies g, = 0. By choosing g, real and defining 
the new variables 

cp l=A,+iAT +:=AT-iA, 

4, = A, -iAT 4; = AT +iA, 

equations (59a) and (596) can be equivalently written as 

which is nothing but the anticommuting Thirring model describing Grassmann solitons 
if we identify w with a mass m and t with the variable 6 = Ax - A - I t ,  A E R, defined in 
a system moving with the soliton with a velocity A - '  in the laboratory frame (Morris 
1978). 

References 

Arnold V I 1971 Russian Math. Surveys 26 29 
- 1977 Geometrical Merhods in the Theory of Ordinary Diflerential Equations (Berlin: Springer) 
Berezin F A 1966 The Method of Second Quonrisation (New York: Academic) 
Berezin F A and Marinov N S 1977 Ann. Phys., NY 104 336 
Elphick C 1987 1. Math. Phys. 28 to be published 



4382 C Elphick 

Elphick C,  Tirapegui E, Coullet P, Brachet M E and looss G 1986 Physica D submitted 
Guckenheimer J and Holmes P 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector 

Giirses M and Oguz 0 1985 Phys. Lett. lO8A 437 
Haken H 1977 Synergetics-An Introduction (Berlin: Springer) 
Kulish D and Nissimov E 1976 J E W  Lett. 24 247 
Kupershmidt B A 1984 Phys. Lett. lO2A 213 
Morns H C 1978 J.  Math. Phys. 19 85 
Ohnuki Y and Kamefuchi S 1980 J. Marh. Phys. 21 601 
Olshanetsky M A 1983 Commun. Math. Phys. 88 63 
Roy Chowdhury A and Roy S 1986 J.  Math. Phys. 21 2464 
Wahlquist H D and Estabrook F G 1975 J.  Math. Phys. 16 1 

Fields (Berlin: Springer) 


